Automated Measures of Fear Conditioning and Extinction in the Rat

Gina Forster, Ph.D.
Neuroscience Group,
Basic Biomedical Sciences
Sanford School of Medicine,
University of South Dakota
Fear Conditioning and Extinction

Conditioning
- CS (context or tone)
- US (foot shock)

Extinction
- CS (context or tone)

Retrieval/Retention
- CS (context or tone)
Why Study Fear Conditioning and/or Extinction?

- To study the cognitive, emotional and biological process underlying:
 - Pavlovian learning
 - Extinction processes
 - Fear learning/conditioning and extinction

- As a tool to determine whether dysfunction of a particular brain region observed in an animal model has functional consequences.
Why Study Fear Conditioning and/or Extinction using Foot shock?

• The paradigm is robust, and only requires one session-learning.

• Allows the study of different facets of learning and memory (e.g. retention, extinction).

• The cognitive, emotional and biological processes underlying fear conditioning and extinction have been extensively studied.
Commonly Used Systems to Measure Fear Conditioning and Extinction

Manual scoring:
- reliable but labor intensive and subject to biases.
- if conducted ‘live’, lack of ability to rescore and evaluate other behaviors.

Photo beams:
- automated, reducing labor and subjectivity.
- additional video footage needed to allow the ability to rescore and evaluate other behaviors.
- problems with the ability to differentiate immobility from freezing.
Commonly Used Systems to Measure Fear Conditioning and Extinction

Video tracking:
- automated, reducing labor and subjectivity.
- video footage allows the ability to rescore and evaluate other behaviors.
- problems with the ability to differentiate immobility from freezing.

Automated scoring systems need to be well validated to ensure accurate measures of freezing, e.g.:
- Pham et al., 2009 – Ethovision with mice
- Anagnostaras et al., 2010 – Video Freeze with mice
A System that Allows Both Automated and Hand-Scoring

A System that Allows Both Automated and Hand-Scoring

- Foot shock and stimuli (tone/light) controlled by Ethovision 3.1 (Noldus Technologies) and animals tracked by Ethovision 3.1.
- Keys for experimenter-scored behaviors can be programmed for current (or later) hand-scoring of behavioral states.
- Video footage recorded for later analysis.
- Ability to rework data into different time bins for analysis.
A System that Allows Testing of Multiple Facets of Fear Conditioning

• Reactivity to fearful stimuli – response to foot shock.
• Auditory/olfactory/visual cue conditioning – recall, retention and extinction.
• Context conditioning – recall, retention and extinction.
• General activity/locomotion and other behaviors of interest.
Validation of an Automated System for Fear Conditioning in Rats

Ethovision 3.1. immobility measure vs. hand-scored freezing

Ethovision Parameters:
- 5 frames per second
- Subtraction detection method
- 2.5% immobility threshold

Conditioning Parameters:
- 56 dB tone (5 sec duration)
- 0.5 mA scrambled foot shock (0.5 sec duration), coinciding with the last 0.5 sec of the tone
- tone + foot shock pairings every 2 min x 10 (20 min session duration total)
Validation of an Automated System for Fear Conditioning in Rats

Ethovision 3.1. immobility measure vs. hand-scored freezing

* significant differences between ethovision and hand-scoring

significantly different from baseline

Retention and Extinction trials were conducted every 24 hours following conditioning – data represent 20 min time bins
Validation of an Automated System for Fear Conditioning in Rats

Ethovision 3.1. immobility measure vs. hand-scored freezing

Baseline, Training & Retention

\[
\begin{array}{c}
y \text{ intercept} = 1.492 \\
slope = 0.946 \\
r^2 = 0.994 \\
p < 0.001
\end{array}
\]
Validation of an Automated System for Fear Conditioning in Rats

Ethovision 3.1. immobility measure vs. hand-scored freezing

![Graph showing the relationship between hand-scored % time freezing and Ethovision % time immobile. The equation for the line is y = 56.591 - 0.209x, with r² = 0.020 and p = 0.656.](image)
Application of an Automated System for Fear Conditioning in Rats

Used to assess:
- acclimation to the environment
- behavioral and endocrine responses to foot shock
- cue (auditory) fear conditioning
- contextual fear conditioning
- extinction of conditioned fear responses

...in rat models of:
- early-life stress
- amphetamine withdrawal
- mild traumatic brain injury
Rat Model of Early-life Stress

Isolation Rearing
- PND 21 (pre-adolescence)
- Rats housed in isolation or in groups of 3-4 rats (controls) from day of weaning.

Re-housing
- PND 42 (mid-adolescence)
- Rats re-housed into groups of 3-4 and allowed to develop to adulthood.

Testing
- PND 56+ (early adulthood)
- Behavioral and/or neurochemical testing.
Early-life Stress alters Adult Anxiety States and CRF-Serotonin Interactions

Post-weaning social isolation of male rats:
- increases anxiety-like behaviors
- increases the expression of CRF$_2$ receptors in the dorsal raphe nucleus
- increases CRF$_2$-elicited serotonin release

Since CRF$_2$ receptor activation in the dorsal raphe nucleus elicits freezing via serotonin release in the limbic system:
...do isolates show altered freezing in response to foot shock?
.....how would this translate to the retention of conditioned fear behavior?

Lukkes et al., 2008, 2009; Forster et al., 2006; 2008
Early-life Stress and Adult Fear Conditioning

Days 1-3
- **Acclimation** to the foot shock box for 30 mins/day, distance moved recorded.

Day 4
- **Conditioning**: with foot shock (0.5 mA, 0.5 sec) paired with tone (56 dB, 5 sec) x 10 within the second 10 min of the 30 min session.

Day 5
- **Retention**: rats placed in foot shock boxes for 30 mins, and tone (x 10) presented in the second 10 minute block.

Lukkes et al., 2009
Cue but not Context Fear Conditioning

% time freezing

Baseline
Presentation
Retention

*
Early-life Stress and Adult Fear Conditioning

Lukkes et al., 2009
Early-life Stress and Adult Fear Conditioning

Conditioning Day

Duration of freezing (sec)

Time (min)

+P < 0.050 and \(\delta P < 0.050 \) compared to pre-shock or pre-tone levels for group-reared and isolation-reared rats, respectively.

Lukkes et al., 2009
Early-life Stress and Adult Fear Conditioning

Retention Test

*P < 0.050 between group-reared and isolation-reared conditions; #P = 0.056 between group-reared and isolation-reared conditions; +P < 0.050 and δP < 0.050 compared to pre-shock or pre-tone levels for group-reared and isolation-reared rats, respectively.

Lukkes et al., 2009
Early-life Stress and Adult Fear Conditioning

Lukkes et al., 2009
Summary

• Video-tracking automated scoring of immobility can provide valid measures of freezing behavior in rats and mice.
 • Substantially reduces labor involved.
 • Removes potential experimenter bias.
 • Provides additional measures to aid in interpretation.

• Automated measures should be validated with comparisons to hand-scored measures.

• Increased immobility over multiple testing sessions (e.g. extinction) poses a problem for automated measures.
Acknowledgements

Validation:
Harvey Oliver

Amphetamine studies:
Jamie Scholl
Shawn Vuong

Social Isolation studies:
Dr. Jodi Lukkes
Adam Bledsoe

mTBI studies:
Danielle Meyers
Daniel Davies
Jeffrey Barr

Collaborators:
Dr. Michael Watt
Dr. Curtis Kost, Jr.
Dr. Pat Manzerra

Funding:
NIH R01 DA019921
NIH P20 RR015567
DoD PT090761
South Dakota Board of Regents
USD UDiscover
USD Medical School Research Fellowship
Acknowledgements

2006-2008

2009

2010