Fish live longer and are more active after eating “young poo”

Fish live longer and are more active after eating “young poo”

Posted by Gonny Smit on Thu 20 Apr. 2017 - 2 minute read

Gut flora – they’re not the most appetizing thing to talk about, but by now, we know those tiny organisms are important. They have a direct role in maintaining our immune systems, they influence and are affected by several diseases, and our individual microbiome composition changes throughout the lifespan.

In several other species, it’s no different. Mice, flies… and even the African turquoise killifish (Nothobranchius furzeri) that was recently investigated at the Max Planck Institute for Biology of Ageing (Germany).

Killifish

African turquoise killifish typically live for only a couple of months, which makes them a good subject to study changes in gut flora during the aging process. Additionally, research shows that their microbial composition resembles those of other vertebrate aging model organisms.

Changes as fish get older

This study compared the microbial composition of 6-week-old fish (the youngsters) to that of 16-week-old fish (the oldies), and found that microbial composition was significantly altered, with older fish having a great reduction in gut bacterial richness, and a higher prevalence of potentially pathogenic bacteria.

Eating poo

So here is where you’ll need a strong stomach: to test the effect of microbial gut composition on the aging process, the researcher made middle-aged fish (9.5 weeks) eat young fish poo.

Experimental setup

First, the older fish were subjected to antibiotic treatment to clear out their gut flora as much as possible. This in itself had a positive effect on the life span of the fish. But fish that were exposed to the youngster’s poo actually lived longer (they normally don’t eat poo, but according to Valenzano in Nature News, they will probe and bite at the poo, and thus ingest the microbes).

Like to move it

Not only did ingesting flora from the young fish poo make the fish live longer, it also increased their exploratory behavior, which the researchers used as a measure for individual health. They were as active as 6-week-olds, and the effect was long lasting: the increased activity was still noticeable at 16 weeks of age.

Measuring activity

To measure fish activity, EthoVision XT video tracking system was used. During a 20-minute test, they were tracked using an overhead mounted camera, and total swimming distance was analyzed within the EthoVision XT software.









FREE TRIAL: Try EthoVision XT yourself!

Request a free trial and find out what EthoVision XT can do for your zebrafish research!

  • Track zebrafish adult, larvae or embryo
  • Suitable for tracking in any arena
  • Most cited video tracking system


References

Image credits: German wikipedia user Ugau [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-sa/3.0/)], via Wikimedia Commons

Subscribe to the blog
Share this post
Topics
Learn
more
Relevant Blogs
exploratory-behavior-larval-zebrafish

How to measure complex exploratory behavior in larval zebrafish

Behavioral tests as the open field may overlook complex patterns of behavior. Today our guest bloggers explain about a new set-up for zebrafish larvae.
four-facts-zebrafish-and-zebrafish-larvae

4 Facts about zebrafish and zebrafish larvae

Did you know that zebrafish larvae are able to detect minute movement in the water and that zebrafish are better than fruit flies? Read all 4 facts!
optogenetics-stress-response-zebrafish-larvae

How optogenetics is used to study the stress response in zebrafish larvae

Stress might seem like a bad word, but it does have its perks. A recent study by Rodrigo J. De Marco uncovered the role of the pituitary in zebrafish larvae behavior after the onset of stress.