
Stress is a natural thing, and how we cope with it differs from person to person. In research, we use the term coping style, something that emerges early on in life for zebrafish.

The zebrafish (Danio rerio) is increasingly being used as model in behavioural, neurobiological and genetic research.

We all know of animals that are able to regenerate: lizards that grow back their tails, flatworms that can grow into new worms when cut in half. Zebrafish have this special ability as well.

Zebrafish. This little fish is a vertebrate, and a relatively complex one. Looking at the major neurotransmitters and hormones that are investigated in neuroscience, they are as good of a model as many mammalian species.

How to mark zebrafish without compromising their behavior? They may have just found the answer to this at the University of Toronto. Cheung et al. tried out a method using subcutaneous injection with dyes.

In this post I am looking back at our most popular posts (based on numbers of views) on video tracking. Zebrafish, optogenetics, and Parkinson’s disease are topics that dominate the list, which honestly is no surprise to me.

PCBs are synthetic molecules that were used in transformers, electric motors, and more applications. It was quickly discovered that these molecules are toxic, and subsequently, they were banned.

By this point, we do not need to tell you how popular zebrafish are. We also probably do not need to point out the great technological advances that are being made in research because of the use of optogenetics.

Ever heard of quantum dots? These dots are nanoparticles made of a semiconductor material, which have unique optical properties, making them of great interest for fields such as biological imaging, medical diagnostics.

Video tracking is used to track a widevariety of animal species in even more different test arenas. From insects of 1 mm on leaf discs, to monkeys in a cage, or zebra fish in an aquarium.