Emotion analysis
FaceReader
To gain accurate and reliable data about facial expressions, FaceReader is the most robust automated system that will help you out.
-
Clear insights into the effect of different stimuli on emotions
-
Very easy-to-use: save valuable time and resources
-
Easy integration with eye tracking data and physiology data








Trusted by researchers around the world
FaceReader benefits your work
Many researchers have turned towards using automated facial expression analysis software to better provide an objective assessment of emotions. FaceReader™ is used worldwide at more than 1,000 universities, research institutes, and companies in many markets, from consumer and psychology research to usability studies.
FaceReader software is fast, flexible, objective, accurate, and easy to use. It immediately analyzes your data (live, video, or still images), saving valuable time. The option to record audio as well as video makes it possible to hear what people have been saying – for example, during human-computer interactions, or while watching stimuli.
Measure emotions with FaceReader
FaceReader is the best automated system for the recognition of specific properties in facial images and expressions. Next to the basic or universal expressions, you can define your own Custom Expressions. Additionally, FaceReader can recognize a 'neutral' state and analyze 'contempt'.
Whether your test participant is a baby, a child, an adult, or an older person, FaceReader adjusts the analysis to the model that best fits your research.
How FaceReader works
- Face finding – Finds a face using a Deep Learning based face finding algorithm
- Face modeling – Makes an accurate artificial face model using almost 500 key points
- Face classification – Classifies the expressions with artificial neural networks
These steps result in outcomes such as basic expressions, custom expressions, head orientation, gaze direction, valence and arousal, Action Units, heart rate and heart rate variability, and consumption behavior.

FaceReader is the most reliable software tool for facial expression analysis (source).
Accurate emotion classification
According to a validation study using ADFES, FaceReader 9 delivers accurate performance for emotion classification, with an average accuracy of 99% [1].

Relevant blogs

Comparing machine emotion recognition with a human benchmark
Our emotions come across clear in our facial expressions. Due to this, facial expressions can be used in a wide variety of studies.
Two examples of on-site observational studies with older persons
In certain cases, observations for your study are best performed on-site. In this blog, we describe examples of observational studies with older age groups, conducted at home or at a healthcare facility.