Optogenetics in zebrafish

Tools for

Optogenetics in zebrafish

Optogenetics allow scientists to control the activity of specific neurons and study their downstream influence on a variety of biological processes, including behavior. In rodent studies this technique requires optical fiber implantation, but as they are transparent, fiber optics are not needed in studies with zebrafish larvae. Light simply needs to shine in the right direction, making it easy to study the role of specific neurons in behavior.

Tools for Optogenetics in zebrafish
 

Optogenetics and zebrafish larvae

By inserting light-sensitive receptor proteins into neurons in vivo, scientists are able to make these neurons sensitive to activation by light of specific wavelengths.

In zebrafish studies, the light-sensitive receptor protein halorhodopsin (NpHR) has successfully been used to inhibit swimming behavior in zebrafish larvae (Arrenberg, et al., 2009). Other research showed that channelrhodopsin-2 (ChR2) activation induced backward swimming in a sparse transgene expression line (Zhu et al., 2009).

 
 


css ruud van den bos zebrafish well plate chamber

Controlled environment

Application of optogenetic stimulation in zebrafish larvae does not require fiber optics, but it does require the correct wavelength (color) of light. When using the DanioVision Observation Chamber, the Optogenetics Add-on provides a way to accurately control and precisely time the application of optogenetic stimulation to up to 96 individuals simultaneously (working with 96 well plates).

 
 


Zebrafish research with DanioVision

Larvae activity and movement patterns are basic measurements used in many studies. They can reveal information on stereotypic and epileptic behaviors, circadian rhythmicity, motor control, movement disorders, neural development, and more.

DanioVision is a complete system designed for exactly these types of experiments with zebrafish larvae, and is often used in studies related to drug development, safety pharmacology, behavioral genetics, and circadian rhythmicity.

 
 


References

 


Relevant blogs

The search for robust fear inducing stimuli in zebrafish research

The search for robust fear inducing stimuli in zebrafish research

Zebrafish behavioral research has grown by leaps and bounds, and behavioral paradigms are being developed with the aim of better understanding mechanisms that might underlie aberrant behavioral phenotypes.
Seizing fish: a high-throughput screen for novel antiepileptic drugs

Seizing fish: a high-throughput screen for novel antiepileptic drugs

The lab of Prof. Richard Baines investigates how the electrical development of neurons is regulated. His research was long based on the larvae of fruitfly, but the lab recently started using zebrafish larvae.
Zebrafish provide key insights into alcohol addiction

Zebrafish provide key insights into alcohol addiction

Why is it that when people drink, only small subsets of individuals develop an alcohol addiction? Steven Tran from the Gerlai Lab tells us why zebrafish are very helpful in the search for the answer to this question.
 
Ready to kick start your research?
Want better insights and faster results? Contact us now to learn how we can help you!

Email address *

Organization *

Country *

Privacy policy *

Information and updates

I would like to receive high-quality content produced by Noldus that is relevant for me, such as blogs, product updates, customer stories, and events.