Zebrafish larvae readily absorb compounds from the surrounding water, which is a great advantage when it comes to determining the effects of certain drugs or other substances. For example, they are an ideal subject when testing novel anticonvulsants or proconvulsants in epilepsy research.

Observation Chamber

Zebrafish larvae have the great advantage of being small enough to test in multi-well plates, making them suitable for high-throughput screening. A controlled testing environment allows for effective and efficient protocols. 

An observation chamber offers just that. The DanioVision Observation Chamber provides a complete testing environment: it contains all necessary hardware on the inside, keeping everything else out so you are in control over the experimental conditions. Its innovative design guarantees a reliable image for tracking each individual larva.

Compound screening in 96-well plates

Screening compounds benefits greatly from 96-well plate setups, as this allows for high-throughput testing. DanioVision is a great tool for accommodating such research.

“Exposing 2 to 4 dpf fish to moderate concentrations of water-soluble proconvulsants, such as pentylenetetrazol (PTz), is sufficient to dramatically increase locomotion that can very easily be measured using the DanioVision system”, according to Richard Baines (University of Manchester, UK). 

Zebrafish research with DanioVision

Larvae activity and movement patterns are basic measurements used in many studies. They can reveal information on stereotypic and epileptic behaviors, circadian rhythmicity, motor control, movement disorders, neural development, and more.

DanioVision is a complete system designed for exactly these types of experiments with zebrafish larvae, and is often used in studies related to drug development, safety pharmacology, behavioral genetics, and circadian rhythmicity.

Free demo


Read more about Richard Baines' research in this blog posthttp://www.noldus.com/blog/seizing-fish-high-throughput-screen-novel-antiepileptic-drugs.

Publications you might be interested in: