Selected publications - DanioVision

Here is a selection of recent papers that mention the use of DanioVision. If you feel your paper should be on this list, please let us know at!


Bailey, J.M; Oliveri, A.N.; Karbhari, N.; Brooks, R.A.J.; De La Rocha, A.J.; Janardhan, S.; Levin, E.D. (2016). Persistent behavioral effects following early life exposure to retinoic acid or valproic acid in zebrafishNeuroToxicology, 52, 23-33.

Graham, S.; Rogers, R.P.; Alper, R.H. (2016). An automated method to assay locomotor activity in third instar Drosophila melanogaster larvae. Journal of Pharmacological and Toxicological Methods, 77, 76-80.

Grone, B.P.; Marchese, M.; Hamling, K.R.; Kumar, M.G.; Krasniak, C.S.; Sicca, F.; Santorelli, F.M.; Patel, M.; Baraban, S.C. (2016). Epilepsy, behavioral abnormalities, and physiological comorbidities in syntaxin-binding protein 1 (STXBP1) mutant zebrafish. PLOS ONE, doi: 10.1371/journal.pone.0151148.

Samuel, A.; Rubinstein, A.M.; Azar, T.T.; Ben-Moshe Livne, Z.; Kim, S.-H.; Inbal, A. (2016). Six3 regulates optic nerve development via multiple mechanismsScientific Reports6, 20267. 


Bestman, J.E.; Stackley, K.D.; Rahn, J.J.; Williamson, T.J.; Chan, S.S.L. (2015). The cellular and molecular progression of mitochondrial dysfunction induced by 2,4-dinitrophenol in developing zebrafish embryos. Differentiation, doi: 10.1016/j.diff.2015.01.001.

Brown, D.R.; Bailey, J.M.; Oliveri, A.N.; Levin, E.D.; Di Giulio, R.T. (2015). Developmental exposure to a complex PAH mixture causes persistent behavioral effects in naive Fundulus heteroclitus (killifish) but not in a population of PAH-adapted killifishNeurotoxicology and Teratology53, 55-63.

Crosby, E.B.; Bailey, J.M.; Oliveri, A.N.; Levin, E.D. (2015). Neurobehavioral impairments caused by developmental imidaclopridNeurotoxicology and Teratology49, 81-90.

Dinday, M.T.; Baraban, S.C. (2015). Large-scale phenotype-based antiepileptic drug screening in a zebrafish model of Dravet SyndromeeNeuro, doi: 10.1523/eneuro.0068-15.2015.

Ford, A.T.; Fong, P.P. (2015). The effects of antidepressants appear to be rapid and at environmentally relevant concentrationsEnvironmental Toxicology and Chemistry, doi: 10.1002/etc.3087.

Glazer, L.; Hahn, M.E.; Aluru, N. (2015). Delayed effects of developmental exposure to low levels of the aryl hydrocarbon receptor agonist 3,3',4,4',5-pentachlorobiphenyl (PCB126) on adult zebrafish behavior. Neurotoxicology52, 134-143. 

Huang, J.; Zhong, Z.; Wang, M.; Chen, X.; Tan, Y.; Zhang, S.; He, W.; He, X.; Huang, G.; Lu, H.; Wu, P.; Che, Y.; Y, Y.-L.; Postlethwait, J.H.; Chen, W.; Wang, H. (2015). Circadian modulation of dopamine levels and dopaminergic neuron development contributes to attention deficiency and hyperactive behaviorThe Journal of Neuroscience, 35(6), 2572-22587.

Le Bihanic, F.; Sommard, V.; Perrine, L. de; Pichon, A.; Grasset, J.; Berrada, S.; Budzinski, H.; Cousin, X.; Morin, B.; Cachot, J. (2015). Environmental concentrations of benz[α]anthracene induce developmental defects and DNA damage and impair photomotor response in Japanese medaka larvaeEcotoxicology and Environmental Safety113, 321-328.0

Macauley, L.J.; Bailey, J.M.; Levin, E.D.; Stapleton, H.M. (2015). Persisting effects of a PBDe metabolite, 6-OH-BDE-47, on larval and juvenile zebrafish swimming behaviorNeurotoxicology and Teratology, doi: 10.1016/

Oren, M.; Tarrant, A.M.; Alon, S.; Simon-Blecher, N.; Elbaz, I.; Appelbaum, L.; Levy, O. (2015). Profiling molecular and behavioral circadian rhythms in the non-symbiotic sea anemone Nematostella vectensis. Scientific Reports, 5:11418, doi: 10.1038/srep11418.

Stanley, J.K.; Lotufo, G.R.; Biedenbach, J.M.; Chappell, P.; Gust, K.A. (2015). Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpolesEnvironmental Toxicology and Chemistry, doi:10.1002/etc.2890.

Yelin-Bekerman, L.; Elbaz, I.; Diber, A.; Dahary, D.; Gibbs-Bar, L.; Alon, S.; Lerer-Goldshtein, T.; Appelbaum, L. (2015). Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4ae-LIFE4, e08638.


Ben-Moshe, Z.; Alon, S.; Mracek, P.; Faigenbloom, L.; Tovin, A.; Vatine, G.D.; Eisenberg, E.; Foulkes, N.S.; Gothilf, Y. (2014). The light-induced transcriptome of the zebrafish pineal gland reveals complex regulation of the circadian clockwork by light. Nucleic Acids Research, 1-18.

Bihanic, F. Le; Clerandeau, C.; Menach, K. Le; Morin, B.; Budzinski, H.; Cousin, X.; Cachot, J. (2014). Developmental toxicity of PAH mixtures in fish early life stage. Part II: adverse effects in Japanese medaka. Environmental Science and Pollution Research, doi:10.1007/s11356-014-2676-3.

Chiffre, A.; Clérandeau, C.; Dwoinikoff, C.; Le Bihanic, F.; Budzinski, H.; Geret, F.; Cachot, J. (2014). Psychotropic drugs in mixture alter swimming behavior in Japanese medaka (Oryzias latipes) larvae above environmental concentrations. Environmental Science and Pollution Research, doi: 10.1007/s11356-014-3477-4.

Daya, A.; Vatine, G.D.; Becker-Cohen, M.; Tal-Goldberg, T.; Gothilf, Y.; Du, S.J.; Mitrani-Rosenbaum, S. (2014). Gne depletion during zebrafish development impairs skeletal muscle structure and function. Human Molecular Genetics, doi:10.1093/hmg/ddu045.

Kokkali, V.; Delft, W. van. (2014). Overview of commercially available bioassays for assessing chemical toxicity in aqueous samples. Trends in Analytical Chemistry, 61, 133-155.

Kucukkal, T.G.; Yang, Y.; Chapman, S.C. Cao, W.; Alexoc, E. (2014). Computational and experimental approaches to reveal the effects of single nucleotide polymorphisms with respect to disease diagnostics. International Journal of Molecular Sciences, 15, 9670-9717.

Spulber, S.; Kilian, P.; Ibrahim, W.N.W.; Onishchenko, N.; Ulhaq, M.; Norrgren, L.; Negri, S.; Di Tuccio, M.; Ceccatelli, S. (2014). PFOS induces behavioral alterations, including spontaneous hyperactivity that is corrected by dexamfetamine in zebrafish larvae. PLoS ONE, 9(4), e94227.

Vrieze, E. de; Wiel, S.M.W. van de; Zethof, J.; Flik, G.; Klaren, P.H.M.; Arjona, F.J. (2014). Knockdown of monocarboxylate transporter 8 (mct8) disturbs brain development and locomotion in zebrafish. Endocrinology, doi: 10.1210/en.2013-1962.


Baraban, S.C.; Dinday, M.T.; Hortopan, G.A. (2013). Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential dravet syndrome treatment. Nature Communications, doi:10.10328/ncomms3410.

Da Fonseca, T.L.; Correia, A.; Hasselaar, W.; van der Linde, H.C.; Willemsen, R.; Outeiroa, T.F. (2013). The zebrafish homologue of Parkinson’s disease ATP13A2 is essential for embryonic survivalBrain Research Bulletin90, 118– 126.

Duan, J.; Yu, Y.; Li, Y.; Yu, Y.; Li, Y.; Huang, P.; Zhou, X.; Peng, S.; Sun, Z. (2013). Developmental toxicity of CdTe QDs in zebrafish embryos and larvaeJournal of Nanoparticle Research15, 1700. 

Smadja Storz, S.; Tovin, A.; Mracek, P.; Alon, S.; Foulkes, N.S.; Gothilf, Y. (2013). Casein Kinase 1δ Activity: A Key Element in the Zebrafish Circadian Timing SystemPLoS ONE8(1), e54189.


Elbaz, I.; Yelin-Bekerman, L.; Nicenboim, J.; Appelbaum, L. (2012). Genetic ablation of hypocretin neurons alters behavioral state transitions in zebrafishNeurobiology of disease32(37), 12961-12972.

Taylor, R.W.; Romaine, I.M.; Liu, C.; Murthi, P.; Jones, P.L.; Waterson, A.G.; Sulikowski, G.A.; Zwiebel, L.J. (2012). Structure-activity relationshop of a broad-spectrum insect odorant receptor agonist. ACS Chemical Biology, 7(10), 1647-1652.

Tovin, A. ; Alon, S.; Ben-Moshe, Z.; Mracek, P.; Vatine, G.; Foulkes, N.S.; Jacob-Hirsch, J.; Rechavi, G.; Toyama, R.; Coon, S.L.; Klein, D.C.; Eisenberg, E.; Gothilf, Y. (2012). Systematic identification of rhythmic genes reveals camk1gb as a new element in the circadian clockwork. PLoS Genetics8(12), e1003116.

Zhao, T.; Zondervan-van der Linde, H.; Severijnen, L.-A.; Oostra, B.A.; Willemsen, R.l Bonifati, V. (2012). Dopaminergic Neuronal Loss and Dopamine-Dependent Locomotor Defects in Fbxo7-Deficient Zebrafish. PLoS ONE, 7(11), e48911.